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Abstract The Hopf algebra dual form for the non-standard "nipmetric deformadan of the 
(1 + 1) Poincd  algebra isrr(l, 1) is deduced. In this framework, the quantum coordinates that 
generate Fun., (ISO(l ,  1)) delne an infinite dimensional Lie algebra. The T-matrix formalism 
is used to derive a universal R-matrix for both Uuiso(l, 1) and Fun,(lSO(l, 1)). It is also 
shown how these results can be generalized for the triangular deformations of (1 + 1) PoincarL 
and Galilei algebras that include a spacetime dilation genemor. 

1. Introduction 

Quantum deformations were introduced as quantizations of some integrable models 
characterized by quadratic Poisson brackets [l]. The essential relation between these 
brackets and Lie bialgebras was established by Drinfel'd [2]. This link provides a framework 
in which to understand the quantization of such Poisson-Lie structures as a dual process 
to the (bialgebra) deformation of universd enveloping Lie algebras [3]. More recently, 
the introduction of the Hopf algebra dual form T has summarized duality in a universal 
(representation independent) setting [ 4 4 ] .  The transfer matrices of certain integrable 
systems can be seen as particular realizations of the dual form T and, conversely, the 
construction of new integrable models could be guided by the obtention of new T-matrices. 
In general, this approach provides a 'canonical' formalism in which quantum objects are 
defined in a completely similar language to their classical counterparts. This 'proper' setting 
provides a generalization of many group theoretical results to the non-commutative cases in a 
straightforward-although possibly cumbersome-way (for instance, see [7] for an example 
in the context of q-special function theory). From an algebraic point of view, the Timatrix 
approach emphasizes the equivalent role that both quantum algebras and quantum groups 
play as Hopf algebra deformations and reveals the importance of solvable Lie~algebras in 
this context, a fact that has also been pointed out in 181. 

The Lie bialgebra structures compatible with a determined Lie algebra give a first-order 
characterization for its quantum algebra deformations. %far, the deformations coming from 
the (non-degenerate) coboundary Lie bialgebra.structures classified by Belavin and Drinfel'd 
[9]~have been deeply studied (the so-called 'standard' deformations [lo, 111). In some cases, 
their corresponding T-matrices have been deduced and, by using contraction methods, these 
results have been extended to some quantum non-semisimple groups [U, 12,131. 
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In this paper we deal with the inhomogeneous algebra iso(1,l) " ~ t z  0 so(l.1) with 

(1.1) 

As a real form, the algebra iso(1,l) is isomorphic to the (1 + 1)-dimensional Poincari 
algebra: K and P+ generate, respectively, the boosts and the translations along the light- 
cone. A non-standard coboundary Lie bialgebra (iso(1, l), 8 " ) )  is generated by the classical 
r-matrix 

classical commutation rules 

[ K ,  P*] = 12P+ ~ ~ [P+, P-] = 0. 

As usual, S ( " ) ( X )  = [l @X+X@ 1, r(")] and r(") verifies the classical Yang-Baxter equation 
(CYBE). The set of coboundary structures for this algebra is completed by the Lie bialgebra 
(iso(1, 1),8(s)) given by 

r(') = K A (P- + p+) (1.3) 

that generates the standard deformation [14,15] (r(s) fulfils the modified CYBE). As a 
particular feature of the (1 + 1) Poincari algebra [16], there also exists a non-coboundary 
iso(1, 1) bialgebra with cocommutator 

8(nc)(K) = 0 8cnc)(P*) = p* A K .  (1 4 
It can be easily checked that the quantum Poincard algebra of [17] is a deformation of 
iso(1, 1) 'in the direction' of These three Lie bialgebras were characterized in [18]. 

Starting from the quantization Uwiso(l, 1) (reviewed in section 2) of the Lie bialgebra 
(iso(1, l), S")), the construction of its Hopf algebra dual form is developed in section 3. 
The main result of this section is that the non-standard quantum T-matrix is written as a 
product of the usual exponentials. We recall that the (1 + 1) Poincari dual form given in 
[I21 (that corresponds to the quantum algebra [17]) does contain q-exponential factors. 

In section 4, the non-standard quantum PoincarA group Fun, ( lSO( l ,  1)) is deduced. 
We emphasize a relevant difference of the result so obtained with respect to the T-matrices 
already known: in [4,5,12,13] the classical dynamical variables (i.e. the group coordinates 
under a certain factorization of the group elements) generate a (solvable) finite dimensional 
Lie bialgebra (gx, 6), and the quantum group is constructed as a deformation U&. In 
our case, the Poisson algebra g, defined by the Sklyanin bracket coming from (1.2) is 
an infinite dimensional Lie algebra, and its quantization is obtained by applying the Weyl 
rule. In particular, this enhances the differences between the T-matrix of [I21 and the one 
presented here. 

Further applications of the T-matrix are developed in section 5. First, the dual form 
can be used to obtain a transformation of the light-cone quantum coordinates in terms of 
the quantum spacetime ones at the level of the quantum universal enveloping algebra and 
in such a way that duality is preserved. Second, a universal R-matrix for Ll,iso(l, 1) 
is derived by making use of the existence of an algebra homomorphism and coalgebra 
antihomomorphism that carries the  quantum group Fun,(lSO(l, 1)) into the quantum 
algebra L',iso(l, 1). Finally, and starting from these results, the Hopf algebra dual form 
T and a universal R-matrix are easily constructed for a quantum (1 + 1) Poincari algebra 
enlarged with a dilation. A contraction of this structure gives rise to a (1 + 1) quantum 
Galilei algebra, which can be identified in the context of the null-plane deformation of the 
(2+ 1) Poincard algebra given in 119J'with the isotopy (Hop0 subalgebra of the null-plane. 
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2. Non-standard quantum iso(1,l) algebra 

Up to equivalence, there exist three types of non-trivial sL(2, It) (coboundary) Lie bialgebra 
shuctures, as associated with the three types of orbits of SL(2, B) acting on sl(2, B) via 
the adjoint action. In this case A'd(2, R) is isomorphic to the adjoint representation of 
sl(2, R) and therefore bivectors can be identified to vectors, which are spacelike, time-lie 
and light-like. One Lie bialgebra is generated by r") = h J+ A J- (h E R) and underlies 
the (standard) Drinfel'd-Jimbo deformation for this algebra. The non-standard bialgebra is 
related to~r(") = 53 A J+ and its quantization was developed in [20]. 

At a classical level, the involutive automorphism of sL(2, R) given by. S(J3, J+) = 
(J3,  -&) induces an Inonu-Wigner contraction of this algebra that is obtained as the limit 
E -+ 0 of the transformation ( K ,  P i )  := r ( J 3 ,  J*) = ~ ( J 3 , s J + ) .  The algebra that arises 
under such a contraction is just (1.1). This procedure can be extended to the quantum case 
by taking into account the following 'quantum' automorphism of U2d(2, B) 

Sq(J3 ,  J i ; z )  = ( J 3 ,  -Ji; -z). (2.1) 

The involution S, gives rise to a generalized Inonu-Wigner contraction: 

( K ,  Pi; U) := rq(J3, Ji; Z) = ( J 3 .  E J i ;  Z/E) (2.2) 

where K and P i  and w are the Lie generators and the deformation parameter of the 
contracted quantum algebra U,iso(l, 1). By applying the transformation r4 onto the 
deformation given in [ZO] and making the limit's + 0, the quantum algebra Uwiso(l ,  1) is 
obtained (see [19]): 

AP+ = 1 8 P+ +P+ 8 1 
AP- = e-'"'+ 8 P- + P- 8 e"''+ 
AK =e-"'+ 8 K + K @eWp+ 

sinh(w Pi) 
[K,P+1=2 [ K ,  P-I = -2P- COS~(WP+)  [P+, P-] = 0. (2.5) 

This structure is a quantization of the non-standard Lie bialgebra of iso(l.1) generated 
by r(") = K A P+. It is worth recalling that this quantum algebra was first discovered in 
1211 with no reference to contraction procedures. The centre of U,iso(l, 1) is generated 
by 

sinh(wP+) c, = 2P- 
- w  

A classical 3 x 3 matrix representation of iso(1, 1 )  is given by 

0 0 0  

0 -2 0 -1 0 0 
(2.7) 

and it can be easily checked that this is also a representation of the quantum commutation 
rules (2.5) (note that D(P+) is an idempotent matrix). 
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3. The universal T-matrix 

Let us consider the Hopf algebra dual form [4,51 

T = Ex' 8 PIL 
P 

where X" runs over all the elements of the basis of a given Hopf algebra and p P  are the 
elements of the dual basis (summation over repeated indices will be omitted from now on). 

In this section we give the construction of the universal T-matrix (3.1) for the Hopf 
algebra U,iso(l, 1). A suitable basis X P  to work turns out to be Xabc = AaA+*AC - 
(hereafter this ordering will be preserved), where 

A+ = P+ A- = e-"'+p- A = ewP+K. (3.2) 

The following coproduct and commutation rules are deduced from (2.3) and (2.5): 
A(A+) = 1 @ A +  + A +  @ 1 
A(A-) = e-2wA+ 8 A- + A- 8 I 
A(A) = 1 @ A + A 8 dWA+ 

(3.3) 

The dual basis to XUhc is defined by 

(puhc.  XImn) = 6; 8; 82 

and we set 2- = PIW, 2+ = polo and i = PWI. 

(3.5) 

Theorem 3.1. 
h, 2+, ,f in the form 

The dual basis pqr2 can be expressed in terms of the dual coordinates 

a: a; i s  
r.> PY , = --- q! r !  s! 

and the Hopf algebra dual form T reads 
T = eA-@LeA+@2+eA@f 

(3.6) 

(3.7) 

The proof of this statement follows by considering the structure tensor F that gives us 

(3.8) 

(3.9) 

the coproduct of an arbitrary element of Uwiso(l, 1) 

A(Xuhc) := J$$& X" @ Xq" 

and, by means of duality, the product in Fun,(ISO(I, 1)) 

Plmn P q . 7  = F2i;qrr Puhc. 

(3.10) 

Two recurrence relations for F can be deduced by observing that 

A(X"~') = ~ A ( A - ) A ( X ( ~ - ] ) ~ ~ )  (3.11) 
A ( X O ~ )  = A(A+)A(X"+')~) (3.12) 
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and using (3.3) and (3.4). In this way we find 

b ) l  (3.14) 
where it is assumed that the corresponding component of F vanishes if any of the indices 
q .  I ,  m ,  r takes negative values. 

The recurrence relation corresponding to A(Xuhc) = A(Xub(c-”)A(A) is much harder 
to find in general. However, for our purposes, we shall only need some particular cases of 
it. Relations (3.13) and (3.14), together with (3.10), lead to 

Fabc - p ( b - 1 ) ~  + Fo(h-1)c 
1mn:qr.v - I(m-1)n;qr.Y h”q(r-l).v 

(3.15) 

(3.16) 

(3.17) 

These are the elements of F that are relevant in order to compute the dual basis. Now, with 
the aid of (3.9) and (3.15), the following relation holds 

P l W  P(q--l)rr = F I ~ ( ~ - I ) ~ . ~  uhe PGbc =as, n 8, h 8 c  ,? Pobc = 4 Pqm (3.18) 
hence, 

A 

(3.19) 

Straightforward calculations based on (3.16) and (3.17) together with the fact that pm = 1 
compIete the proof of the theorem. 

-4 a- a- 
4 q ! ~  P,, = - P @ - l ) r s  = ’ . . = - POm. 

4. The quantum group Fun,(lSO(l, 1)) 

The structure tensor F also allows us to deduce the commutation rules between the 
generators of Fun,(lSO(l.  1)) which are given in the next proposition. Note that these 
relations have already been obtained in [18]. 

Proposition 4.1. 
a modulo the relations 

The algebra Fun,(lSO(l, 1)) is the algebra of functions on a l ,  2, and 

[i,i+l= w(e2f - 1) [i,i?-] = o [a+, a-] = - 2 w L  (4.1) . . *  

Prooj! The commutation relation of any two elements of Fun,(lSO(l, 1)) is 

(4.2) ubc 
[ P ~ m n ,  PqwI = (FZ,& - Fqrs:lmn)Puhc. 

The explicit expressions (4.1) for [t,a:l = [pW,, plOO] and [2+, a l l  = [polo, PIW] are 
straightforwardly derived from the relations involving F in the previous section. In spite 
of the absence of a third general recurrence relation, we can again find the particular values 
of F involved in 

(4.3) p h c  [ i ,  k+l = (F$coio - o I o o m ) h h c .  

From (3.16) we obtain that F&,, . = b6: 8: Sf. On the other hand, F${olo gives the 
coefficient of the term A @ A+ in A(Xahc). Such a term appears either when b = c = 1 
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(this contribution annihilates the previous poll term) or in the cases a = b = 0 and c 
arbitrary (note that, since [ A ,  A d  does not produce A, this generator cannot appear as a 
byproduct of reordering processes). As a consequence, 

(4.4) 
p b e  001;oio Pobc = Poll + 2 W  pool f 4 W  POOZ f... + z k W  pwk ... 

Therefore, 

Note that two algebras (4.1) with parameters w and w' (both of them different from zero) 
are isomorphic. 

Since the classical fundamental representation of iso(1, 1) (2.7) is a fundamental one for 
the quantum algebra Lr,iso(l, I), the specialization of the T-matrix (3.7) to this realization 
turns out to be formally identical to the classical ISO(1, 1) group element, but now with 
non-commutative entries: 

0 
TD = .D(A-)6-eD(n+)6+eD(A)~ = 

Thus, the multiplicative property of T leads to the coproduct for Fun,(lSO(l, 1)) (note 
that D(P+) = D(A*),  D ( K )  = D(A)): 

A ( i )  = i Q 1 + 1 @ R  
(4.7) 

A@-) =2- @ 1 +cosh2R @2- -sinh22 82- =2- 8 1 +e-'? Q &  

and the Hopf algebra Fun,(ISO(I, 1)) is given by commutation rules (4.1), coproduct 
(4.7), counit and antipode 

A@+) =2+ @ 1 +cosh22 @2++sinh2R @&. = 2, Q 1 +ezf 0 2 ,  

e ( X )  = 0 x E (2,,2-, 2)  (4.8) 
y ( i )  = ~-2 y(i+) = -e-'? a+ ~ y(&) = -ez%-. (4.9) 

Provided that the left and right invariant vector fields obtained from the classical matrix 

x i  = ax x i ,  =~e2xa,+ XZ = e-% 0. (4.10) 

representation similar to (4.6) are 

x, R - a  - + 2~+a,+ - za-a,. xi+ = a,, xT;- = a,- (4.11) 

the Sklyanin bracket induced from r(") = A A A+ is 

and gives the structure of a Poisson-Hopf algebra to Fun(lSO(1,  1)). 
In particular, for the coordinates a,, a- and x we get 

( x .  U+] = ezx - 1 ( x ,  a-) = 0 (U+, a-] = -zo-. (4.13) 

This means that the commutation rules (4.1) can be seen as a Weyl quantization ( , } 't 
w-l[, ] of the fundamental Poisson brackets given by (4.13) (so have been obtained in 
[IS]) and that coproduct (4.7) does not change under quantization (compare to [4,12]). 

Finally, it is worth recalling that in [4,5, 12,131 the T-matrix coordinates that generate 
Fun,(G) close a solvable finite dimensional Lie (super) algebra (with the exception of the 
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.esoteric’ quantum GL(n)  151). In particular, for the iso(1, 1) case studied in [12] it is 
shown that 

[n, n+l = -z n+ [n, n-] = -z z- [n+, n-] = 0 (4.14) 
where {n, n+, n-] are also quantized light-cone coordinates of fSO(1,l). This is no 
longer the case for the non-standard deformation (4.1). In fact, if we consider &+- 2- and 
fm := euni (m E Z); we can identify Fun,( lSO(I ,  1)) with an infinite~dimensional Lie 
algebra endowed with a Hopf algebra structure: 

A ( f d  = fm @ fm 
A(B+) = 2c+ @ 1 + fi @6+ 
A(&) = 2- @ 1 + f-I @&. 

(4.15) 
” 

Moreover, since 

[fm,2+1~=2wm(fm+l - fm) (4.16) 
we have an infinite dimensional Hopf subalgebra generated by fm and ri+ (note that A and 
A+ do generate a Hopf subalgebra as well). In principle, this infinite-dimensional aspect 
makes the approach formally closer to the realistic integrable models obtained without 
truncating the spectral parameter [5]. 

5. Applications of the universal T-matrix 

5.1. A change.of quantum coordinates 

It would be interesting to compare the non-standard results so far obtained to the standard 
quantum Poincari group given in [15], where the group element was 

1 0  

22 sinh6 cosh6 
61 coshi sinhi 

and the commutation rules between the quantum coordinates read 
[!,c?i] = w’(cosh! - 1) 
[e,&] = w’ sinhe (5.2) 
[a,,&] = w‘&. 

The ,standard quantum (1 + 1) Poincari plane of coordinates ($I, 2$’) characterized by 
[Pp),P$)] = wr$) is easily derived from these expressions. 

To carry out the comparison, the ‘light-cone’ quantum coordinates (&, 8-) should 
be transformed into the time and space quantum translations (&, 22). Both standard and 
non-standard quantizations turn out to be Weyl quantizations of the classical coordinates 
preserving the multiplicative property of T D  and G (cf (4.12) and equation (3.1) in [15]). 
This fact suggests the following relation - 

(5.3) 
. . .  ^ ^ *  0 = - 2 i  ir, = i - + a +  a2 = a- - a+. 

This redefinition implies that T D  and G become identical. Hence, we have two different sets 
of commutation rules compatible with the same coproduct A(G) = G&G. In particular, 
the change (5.3) on (4.1) provides the non-standard brackets (w’ = -2w) 

[!,&I = w’(coshG - 1 -sinhe) 
[@,&.l=w’(sinhi?+l -coshB) 
[&, a,] = w’ (2, + 22). (5.4) 
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The non-standard quantum Paincar6 plane (whose relations are invariant under the coaction 
defined by G on a vector ($', $))) is characterized by 

[x ,  -(n) , x* -(n) ] = w' (i?) + ip,. (5.5) 
A comparison between both quantizations shows that, in this quantum basis, the non- 

standard deformation seems to be constructed by adding some additional terms on the 
standard relations. It is also worth remarking the absolutely symmetrical role that both 
coordinates play in the non-standard case (see the quantum plane relation (5.5)). This 
kind of 'symmetrical' quantization has already been related to the non-standard (2 + 1) 
deformations at a quantum algebra level [19]. 

In this context, the T-matrix can be used to derive the transformation of the generators 
of Uwiso(l, 1) that is paired by duality to the change of quantum coordinates (5.3). In other 
words, by using elementary properties of T we can find a set ( A I ,  A?, Alz) of generators 
of U,,,iso(l, 1) such that the Hopf algebra dual form T is preserved: 

(5.6) 
Since 'universal' computations to relate both Uwiso(l, 1) bases are extremely 

cumbersome, we can specialize the T-matrix to a (fundamental) representation Q of 
Fun, ( lSO( l ,  1)) given by 

T = eA.06.eA+@&+eA@f~= eA~@&eA&zeAn@8, 

0 0 1 0  0 0 0 0  
Q( i )=(o 0 0 0 0  .) Q(--)=(' 0 0 0 0  ') 

0 0 0 0  0 0 0 0  
/ o  0 0 1\  

1 -2w 0 0 I . .  

0 2 W O '  (5.7) 

A straightforward computation shows that 

From this point of view, Uwiso(l,-l) can be seen as a quantum group with non- 
commuting coordinates A+, A- and A. Moreover, the coproduct (3.3) is reproduced by the 
multiplicative property A(TQ) = TQ6TQ.  In this way, (5.8) could be seen as a transfer 
matrix for a model with quantum dynamical variables generating a quantum Poincard algebra 
(we recall that, for instance, in the sineGordon model the dynamical algebra is just iso(l.l) 
[5]). Therefore, these specializations of universal T-matrices in terms of a representation 
of a quantum group can be used to construct new models in which the dynamical algebra 
coincides with the corresponding original quantum enveloping algebra. 

The new quantum coordinates admit a representation Q(&), Q(&) and Q(8) derived 
from (5.3) and (5.7). By computing the corresponding exponentials we obtain a second 
expression for the dual form T Q  := e A ~ Q ( 6 ~ ) e A z Q ( 6 z ) e A ~ ~ Q ( ~ ) :  
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The relation between the two U,,,im(l, 1) bases is now clear 

A+ = A l  - Az 

Note that lim,,o A- =.Al + A2 and we recover the usual classical change of basis. 

5.2. The universal R-matrix 

It is also possible to obtain a universal R-matrix defined on a quantum algebra Uwg from 
the expression of its T-matrix if there exists an algebra homomorphism and coalgebra 
antihomomorphism @ that carries the quantum group Fun,(G) into the quantum algebra 
U,g. In that case, such a solution of the quantum Yang-Baxter equation (QYBE) would be 
given by [6] 

(5.11) 

It can be checked that for the non-standard quantum Poincar.4 algebra the homomorphism 

@(i) = wA+ @(i+) = -wA @(a-) = 0 Q(1) = 1. (5.12) 

7121 

A = -2A12 A- = -(e -2m(A~-Ad  - ~ ~ - 2 ~ 4  + 1). (5.10) 
2w 

R = (id@ @) T 
with @ operating on the generators of U,g. 

@ is given by 

In fact, the image of Fun,(lSO(l, 1)) under 0 is not U,iso(l, l ) ,  but the Hopf subalgebra 
generated by A and A+, that we shall denote as UJ; the dual form for UWl will be 

= eA+@&eAO.? (5.13) 

The formula~(5.11) applied on (3.7) leads to the following element of Uwiso(l ,  1) @ 

(5.14) 

that is a triangular solution (i.e., U o R = R-l, where U is the flip operator u ( a 8 b )  = b 8 n )  
of the QYBE (this R-matrix is worth comparing with the one deduced in [ZZ]). Moreover, 
it can be proven that 

(5.15) 
In particular, it is interesting to show explicitly how the relation (5.15) is fulfilled in the 
case of A-. Let us consider the new generator ti- = A-ezWA+. whose commutation rules 
with A, A+ and coproduct are 

[A,K-]=-ZA-- ' [A+,A-]=O A(A--)=1@k-+K-@e2"'A+. (5.16) 

To compute the right-hand side of (5.13, we take into account that 

and Fun&) will be generated by i and 2,. 

U,,,iso(l, 1) 
R = (id @ @) j- = e-wA+@AewA@A+ 

U o A(X) = R A(X) R-' for X = {A, A+, A - ] .  

- : 

w l  el A(A--)e-' = A(.+-) + - [f, . . . [f, A(,4-)]"). . .]. 
n! "=I 

(5.17) 

Setting f = wA @ A +  we find that (n 1) 

[wA 8 A+, . . . [wA 8 A+, A(.+-)]"). . .I = (-2w)"L- @'A;eZWA+ (5.18) 
and, in this way, we get 

e ~ A @ A +  A(A--) e-WABA+ = A&) + (-2w)fi - W 

- A- 8 A;eZWA+ 
n !  "=I 

= A(K-) + l- @ (e-ZwA+ - l)eZwA* = 1 8 L- + 8 1 = A,(L-). (5.19) 
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Note that ewAmA+ turns A&) into A;(L-). Since 

[-wA+ @ A, .  . . [-wA+ @ A ,  Ao(~-)]"'. . .I = (2w)"A; t3 ti- (5.20) 

the passage from Ao(i-)  to U o A ( i - )  is given by e-wA+@A: 

(2wy AO(A--)ewA+@A = Ao(i-)  +E -A: @ i- 

+ (eZwA+ - I )  @ i- = 

n! "=I 
= @ 1 + eZwA+ @ i- = U o A(A-). (5.21) 

Finally, the condition (5.15) for A- is straightforwardly obtained from that of A-. 
The (quadratic) commutation rules between the entries of the quantum matrix (4.6) that 

are derived from (4.1) coincide with the relations obtained via the FRT [23] prescription and 
with the aid of a particular representation (2.7) of the quantum R-matrix 

(5.22) R = I @  I + wD(A) A D(A+) 

where I is the 3 x 3 identity matrix. 
Similarly, it can be shown that duality arguments imply that 

(5.23) 

verifies both QYBE and (5.15) for F u n w ( I S O ( l ,  1)). 

5.3. Quantum ( I  + I )  Poincure? and Galilei with dilutions 

Let us consider two copies Uwl' and U-J2 (with generators A', A: and AZ. A:) of the 
(quantum) Hopf subalgebra Uwl of Uwiso(l ,  1). It can be easily checked that the quantum 
algebra U,$ CB U-,I* is a triangular deformation U w j  of a (1 + 1) Poincar.6 algebra enlarged 
with a spacetime dilation. Explicitly, by introducing the boost K, the time and space 
translations H, P and the dilation D as 

(5.24) 
the following coproduct and (non-vanishing) commutation rules are derived: 

A(H) = H t3 1 + 1 t3 H 

A ( K ) =  1 @ K + K t 3 e w P c o s h ( w H ) + D @ e w P s i n h ( w H )  

[K, HI = - (ewp cosh(wH) - 1) 

[ D ,  HI = -ewp sinh(wH) 

A(P) = P @ 1 + 1 8 P 
A(D) = 1 @ D + D t3 ewP cosh(wH) + K @I ewp sinh(wH) (5.25) 

1 1 

I 1 
[K. PI = -ewp sinh(wH) 

[ D ,  PI = - (ewPcosh(wH) - 1). (5.26) 

The classical r-matrix underlying this deformation is r = r' - rz = w(D A P + K A H), 
and the universal T-matrix linked to UwP will be the product of two dual forms (5.13): 

(5.27) 

W W 

W W 

7 = z 1 q  2 - - e  A:@:: ,A'@f'  eA?+@6: eA'@2', 

Under the change of basis (5.24), this element can be written as 
= eH@i eP@j eD@J eK@L (5.28) 

where the change of quantum coordinates is given by 
f i  = L ( i l  f i 2 )  

2 +  + 2 = 2' + 2 2  
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i = 8' - 8 2  
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(5.29) $ = L($ 2 1  - 2;). 
As a consequence, the corresponding quantum Paincar6 group Fun,(p) will be 

[i, i ]  = w ($cosh@) - 1) 
[c?, i ]  = w e'sinhff) ~ 

A@) = i  @ 1 + 1 €3i 
Ad) = €3 1 + e'cosh(i) @ i + e2 sinh(i) @ 

A($) = $ @ 1 + e2 cosh@) @ $ + e2sinh(i) @ f i .  

[i, $1 w e' sinh(i) 
[c?, $1 = w (e"cosh(i) - 1) (5.30) 

A(& = c ? @  1 + 1 8 2  
(5.31) 

An isomorphism between the two algebras (5.26) and (5.30) (which is a coalgebra anti- 
isomorphism) can be easily found starting by (5.12) and taking inro account (5.24). It 
reads 

@(i) = w H '$(a) = w P~ q( i )  = -w K 
@($) = -W D @(1) = 1. (5132) 

Hence, the universal R-matrix for U,? will be 
R =,-wHOK e - m P I D e w D O P e w K O H  (5.33) 

a result that is worth comparing with the one obtained in [22] from a different method. Note 
that, by construction, the R-matrix (5.33) fulfils the equation (5.15) for all the generators 

The non-relativistic limit of this deformation can be ed i ly~  computed by means of a 
contraction. The contracted generators of the quantum (1 + 1) Galilei algebra U , j  are 
defined in terms of the contraction mapping 

of u,p. 

K ' = E K  H' = H P'=.ZP D'= D .  (5.34) 

p = & - ' i  2=fi B ' = E - ' j j  $=2. (5.35) 

The associated quantum contracted coordinates will be (cf 1121) ~, 

If we define the contracted deformation parameter as w' = &-I w and compute the limit 
E -+ 0, we obtain that U,,i will be given by 

A(H') = H'@ 1 + 1 @ H' A(P') = P'@ 1 + I @  P' 
A(D') = I CZJ D' + D' @ e,'" + w' K' 8 e,"' H' 
A(K' )  = 1 8 K' t K' @ e,'" (5.36) 

[K' ,  H'] = (e,''' - 1) [D', H'I = eW'" H' ~ [D',  P'] = - - 1). (5.37) 

Note that the r-matrix for U w , j  is r' = w'(D' A P'+ K.' A H'), and the contracted universal 
T-matrix reads 

1 1 
W W' 

= ,H'Oi;' .P'e? ,D'ed' eK'I.i' (5.38) 

On the other hand, the contraction (5.35).applied onto the quantum Poincar6 group (5.30)- 
(5.31) gives rise to the following quantum Galilei group Fun,.((?): 

[k,  fi'] = w f  (e' - 1) [?,PI= wj e',P [a. PI = wr(e' - 1) (5.39) 

(5.40) 
A ( k )  = k @  l + l @ k  A($)=$@ I +  1 @ $  
~ ( 2 )  = i t @  1 +e' 0 A(?) = B' @ 1 +e' 8 ?+e'P@fi' 
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and the algebra isomorphism and coalgebra anti-isomorphism @' between Fun,,(C) and 
&g is now 

Q'(s') = w' H' @(a) = w' P' W(2) = -w' K' 
O'($) = -w' D' @'(1) = 1. (5.41) 

Hence, the universal R-matrix for Udg is written in the form 

(5.42) 

This result is quite interesting since the algebra Udg is the null-plane isotopy (Hopf) 
subalgebra included in the null-plane deformation of the (2 t 1) Poincd  algebra [19]. 
Hence, (5.42) is a quantum R-matrix for this non-standard Poincar6 deformation, although 
the equation (5.15) is, in principle, not fulfilled for the two remaining Poincd  generators 
out of this subalgebra (the so-called quantum Hamiltonians [24]). 

R! = e-w'H'@K' e-w'P'@D' w'D'BP' ,w'K'@H' e 

6. Concluding remarks 

Non-standard quantum deformations have received scant attention compared to the standard 
ones. However, they present interesting features: the existence of a *h-product that quantizes 
the Poisson-Lie group is always guaranteed for them, and they are naturally adapted to the 
null-plane basis of the PoincarC algebra (see [19.24] for the construction of such null-plane 
deformations of the (2 + 1) and (3 + 1) dimensional cases). 

It is interesting to note that the essential features of the T-matrix approach have been 
obtained without computing all the components of the dual tensors. We have also shown 
that the quantum group Funw(lSO(l, I)) is, in fact, an infinite dimensional Hopf-Lie 
algebra. This structure is rather different to the universal enveloping algebras encountered 
when computing T-matrices in the literature. 
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