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Abstract. The Hopf algebra doal form for the non-standard uniparametric deformation of the
(1 + 1) Poincaré algebra iso(l, 1) is deduced. In this framework, the quantum coordinates that
generate Fun, (fSO(1, 1)} define an infinite dimensional Lie algebra. The T-matrix formalism
is used to derive a universal R-matrix for both Uyiso(l, 1) and Fun,{(ISO(1, 1}}. It is also
shown how these results can be generalized for the trfangnlar deformations of {1 + 1) Poincaré
and Galilei algebras that include a spacetime dilation generator.

1. Introduction

Quantum deformations were introduced as quantizations of some integrable models
characterized by quadratic Poisson brackets [1]. The essential relation between these
brackets and Lie bialgebras was established by Drinfel’d [2]. This link provides a framework
in which to understand the quantization of such Poisson-Lie structures as a dual process
to the (bialgebra} deformation of universal enveloping Lie algebras [3]. More recently,
the introduction of the Hopf algebra dual form T has summarized duality in a universal
(representation independent) setting [4—6]. The transfer matrices of certain integrable
gystems can be seen as particular realizations of the dual form 7T and, conversely, the
construction of new integrable models could be guided by the obtention of new T-matrices.
In general, this approach provides a ‘cancnical’ formalism in which quantum objects are
defined in a completely similar language to their classical counterparts. This ‘proper’ setting
provides a generalization of many group theoretical results to the non-commutative cases in a
straightforward—although possibly cumbersome—way (for instance, see [7] for an example
in the context of g-special function theory). From an algebraic point of view, the T-matrix
approach emphasizes the equivalent role that both quantum algebras and quantum groups
play as Hopf algebra deformations and reveals the impoertance of solvable Lie algebras in
this context, a fact that has also been pointed out in [8].

The Lie bialgebra structures compatible with a determined Lie algebra give a first-order
characterization for its quantum algebra deformations. So far, the deformations coming from
the (non-degenerate) coboundary Lie bialgebra structures classified by Belavin and Drinfel’d
[9] have been deeply studied {the so-called ‘standard’ deformations [10, 11]}. In some cases,
their corresponding T-mairices have been deduced and, by using contraction methods, these
results have been extended to some quantum non-semisimple groups [4-6, 12, 13].
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In this paper we deal with the inhomogeneous algebra iso{l, 1) =t ® so(l, 1) with
classical commutation rules

K, Pe]=o2P, [P, P ]=0 (1.1)

As a real form, the algebra iso(1, 1) is isomorphic to the (1 + I)-dimensional Poincaré
algebra: K and Py generate, respectively, the boosts and the translations along the light-
cone. A non-standard coboundary Lie bialgebra (iso(1, 1), 8®) is generated by the classical
r-matrix

r(n) =K A P.{,.. (1'2)

Asusual, (X)) =[1®X+X®1,7™] and r™ verifies the classical Yang—Baxter equation
(cyRE). The set of coboundary structures for this algebra is completed by the Lie bialgebra
(iso(l, 1), 8®)) given by

r = K A(P_+ Py) (1.3)

that generates the standard deformation [14,15] (+9 fulfils the modified CYBE). As a
particular feature of the (1 + 1) Poincaré algebra [16], there also exists a non-coboundary
iso(l, 1) bialgebra with cocommutator

§5N(K) =0 sW(Py = P.AK. (1.4)

It can be easily checked that the guantum Poincaré algebra of [17] is a deformation of
iso(1,1) ‘in the direction’ of 8. These three Lic bialgebras were characterized in [18].

Starting from the quantization Uyiso(l, 1) (reviewed in section 2) of the Lie bialgebra
(iso(1, 1), 8™, the construction of its Hopf algebra dual form is developed in section 3.
The main result of this section is that the non-standard quantum T-matrix is written as a
product of the usual exponentials. We recall that the (1 + 1) Poincaré dual form given in
{12] (that corresponds to the quantum algebra [17]) does contain g-exponential factors.

In section 4, the non-standard quantum Poincaré group Fun,(ISO(1, 1)) is deduced.
We emphasize a relevant difference of the result so obtained with respect to the T-matrices
already known: in [4, 5, 12, 13] the classical dynamical variables (i.e. the group coordinates
under a certain factorization of the group elements) generate a (solvable) finite dimensional
Lie bialgebra (gx, ), and the guantum group is constructed as a deformation U,g.. In
our case, the Poisson algebra g, defined by the Sklyanin bracket coming from (1.2) is
an infinite dimensional Lie algebra, and its quantization is obtained by applying the Weyl
rule. In particular, this enhances the differences between the T-matrix of [12] and the one
presented here,

Further applications of the T-matrix are developed in section 5. First, the duval form
can be used to obtain a transformation of the light-cone quantum coordinates in terms of
the quantum spacetime ones at the level of the quantum universal enveloping algebra and
in such a way that duality is preserved. Second, a universal R-matrix for Uyise(l, 1)
is derived by making use of the existence of an algebra homomorphism and coalgebra
antihomomorphism that carries the quantum group Fun,(ISO(1,1)) into the quantum
algebra Uyiso(l, 1). Finally, and starting from these results, the Hopf algebra dual form
T and a universal K-matrix are easily constructed for a quantum (1 4 1) Poincaré algebra
enlarged with a dilation. A contraction of this structure gives rise to a (I - 1) quantum
Galilei algebra, which can be identified in the context of the null-plane deformation of the
(2+ 1) Poincaré algebra given in [19] with the isotopy (Hopf) subalgebra of the null-plane.
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2. Non-standard quantum iso(1, 1) algebra

Up to equivalence, there exist three types of non-trivial s{(2, R) (coboundary) Lie bialgebra
structures, as associated with the three types of orbits of SL(2, R) acting on s{(2, R) via
the adjoint action. In this case AZsi(2, R) is isomorphic to the adjoint representation of
s (2, R) and therefore bivectors can be identified to vectors, which are space-like, time-like
and light-like. One Lie bialgebra is generated by r® = A J, A J_ (A € R) and underlies
the (standard) Drinfel’d-Jimbo deformation for this algebra. The non-standard bialgebra is
related to r® = J3 A J, and its guantization was developed in [20).

At a classical level, the involutive automorphism of sI(2,R) given by S(J3, J1) =
(J1, —J1) induces an Indnii—Wigner contraction of this algebra that is obtained as the limit
& — 0 of the transformation (X, P} 1= [(Js5, Jx) = (J5, £J2). The algebra that arises
under such a contraction is just (1.1). This procedure can be extended to the quantum case
by taking into account the following ‘quantum’ automorphism of U,s((2, R)

S;(J3, Jx52) = (3, —Jx: —2). 2.1
The involution S, gives rise to a generalized Indnii-Wigner contraction:
(K, Pryw) == Ty(45, J1;2) = (5,825 2/€) 2.2)

where K and P; and w are the Lie generators and the deformation parameter of the
contracted quantum algebra Uuiso(1,1). By applying the transformation I'; onto the
deformation given in [20] and making the limit'¢ — 0, the quantum algebra Uyiso(l, 1) is
obtained (see [19]):

AP, =1@ P, +P.®1

AP_=e " @p 4 P @euM 2.3)
AE =c M QK+ K @™

€X)=0 v(X) = —e@P XewF for X € {K, Py} 24
inh(w P

(K, P.]= 2ﬂ:§-i (K, P_]==2P_cosh(wPs) [Py, P_]=0. 2.5)

This structure is a quaniization of the non-standard Lie bialgebra of iso(l, 1) generated
by r™ = K A P,. It is worth recalling that this quantum algebra was first discovered in
[21] with no reference to contraction procedures. The centre of Uyiso(l, 1} is generated
by

sinh{w £,)

C,=2P > (2.6)
T w

A classical 3 x 3 matrix representation of iso(l, 1) is given by

o 0 0O 0 0D 0 00
D(K) = (0 0 —2) D{Py) = ( 1 0 0) D(P.) = (1 0 0)
0 -2 0 ' . -1 0 0 1 00
: 27

and it can be easily checked that this is also a representation of the quantum commutation
rules (2.5) {note that D(F.) is an idempotent matrix).
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3. The universal T-matrix

Let us consider the Hopf algebra dual form [4,3]
T=Y X*®py, (3.1)
“

where X* runs over all the elements of the basis of a given Hopf algebra and p, are the
elements of the duat basis (summation over repeated indices will be omitted from now on).

In this section we give the construction of the universal T-matrix (3.1) for the Hopf
algebra Uyiso(1,1). A suitable basis X* to work turns out to be X%¢ = A‘LA.,.”A”
(hereafter this ordering will be preserved), where

AL =Py A_=e WP p_ A=¢e"K. 3.2
The following coproduct and commutation rules are deduced from {2.3) and (2.5):
AAD=1®AL+A:®1
AA)=e 4 QA _+A-Q1 (3.3)
AA) =1R@ A+ AR Wi+
32wA+ — 1
[4, 44] = ——— [A, ALl = —2A_e?4+ [Ay, A_]1=0. (3.4)

The dual basis to X*° is defined by
(Pabe, X'y = 8, 87 87 3.5)

and we set a_ = pigo, &+ = poro and X = poor-

Theorem 3.1. The dual basis pg. can be expressed in terms of the dual coordinates
d_, 4y, ¥ in the form

nlf oy
a.a x

and the Hopf algebra dual form T reads
T = ¢/-Ol-ght83: o481, (3.7)
The proof of this statement follows by considering the structure tensor F that gives us
the coproduct of an arbitrary element of Uyise(l, )

AX) 1= Fi gy X7 @ X9 (3.8)
and, by means of duality, the product in Fun,(ISO(1, 1))

Pimn Pars = P}t;f,f;qr,- Pabe- (39)
In particular, it is easy to see that

abc __ gt gh pC
FOOO;qrs - 'Sq ‘Sr a.v

Fiamsoo = 3§ 85,57 (3.10)
Fimnigrs = 0F 85, 8789 8,8,

Two recurrence relations for F can be deduced by observing that

A(XHYy = A(A)A(X @ Dh (3.11)
A(X9PY = A(AL)A(XEDe (3.12)
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and using (3.3) and (3.4). In this way we find

" a=ippe  (—2w)"* a—1)b
I"‘“’f grs Eﬂkﬂ ig—Dirs (m — k)! + F(la !)mrtt; qes azl (3.13)
b (b'—]) b—1)c
Fﬁmf iqrs = Pﬁm l):qrr - F;:nn wgr—Ds 21 (314)

where it is assumed that the corresponding component of F vanishes if any of the indices
g, l, m, r takes negative values.

The recurrence relation corresponding to A(X“°) = A(X uble—Dy A (A) is much harder
to find in general. However, for our purposes, we shall only need some particular cases of
it. Relatxons (3.13) and (3.14), together with (3.10), lead to

Figgs =a83,828 a1 | 3.15)
Filg e =b8380, 8  b>1 (3.16)

‘and, by simple considerations, we can also find that .
Fimoot = €87 8785, c21. BNERY)

_ These are the elements of F that are relevant in order to compute the dual basis. Now, with
the aid of (3.9) and (3.15), the following relation holds

P100 Pg—yrs = F{Jo’;)‘;(q..nm Pabe = aa 5 8¢ Pabe = q Pgrs ' (3.18)
hence,
a_ a4 .
Pgrs = ? Pig—-lyy == ? Pors- B3.19)

Straightforward calculations based on (3.16) and (3. 17) together with the fact that pog = 1
_complete the proof of the theorem.

4. The quantum group Fun.,(IS0(,1))

The structure tensor F also allows us to deduce the commutation rules between the
generators of Fur, (ISO(1. 1)) which are given in the next proposition. Note that these
relations have already been obtained in [18].

Proposition 4.1.  The algebra Fun,(150(1, 1)) is the algebra of functions on &, 4, and
¥ modulo the relations

-~

(f.64)=w(Ee®-1)  [§.a]=0 [dn4]=-2wa. (41)

Progf. The commutation relation of any two elements of Fun,(/SG(1,1)) is

[pmans qu] ( I‘::; qry F;rii!mn)Pﬂ-‘JC“ 4.2)

-The explicit expressions (4.1} for [%,4.] = [poor, Piop) and [, 4] = [poio, proo) are
straightforwardly derived from the relations involving £ in the previous section. In spite
of the absence of a third general recurrence relation, we can again find the particular values

of F involved in

[X,d:] = (Fg D{Jl 010 monn:)Pubc 4.3)

From (3.16) we obtain that F, g]”;m] = b8 8485, On the other hand, FEZ, gives the
coefficient of the term A ® A, in A(X%"). Such a term appears either when b = ¢ = 1
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(this contribution annihilates the previous pp; term) or inthe cases a = 5 = 0 and ¢
arbitrary (note that, since [A, Ax] does not produce A, this generator cannot appear as a
byproduct of reordering processes). As a consequence,

Fggﬁom Pabe = Po11 + 2w poor + 4w pow + - -+ + 2kw Pook + -+ 4.4)
Therefore,

o .
- 3 Lok ;
[x, a+] =w k—‘2" k= I,U(sz - 1). ' (45)
k=1 "7

Note that two algebras (4.1) with parameters w and w’ (both of them different from zero)
are isomorphic.

Since the classical fundamental representation of iso(1, 1) (2.7} is a fundamental one for
the quantum algebra Uiso(l, 1), the specialization of the T-matrix (3.7) to this realization
turns out to be formally identical to the classical IS0O(1, 1) group element, but now with
non-commutative entries: )

1 0 0
TP = PA-)i-gDlAE DINNT (&_ +é&, cosh2f —sinh2f ) . (4.6)
d_—4d&, —sinh2f cosh2f

Thus, the multiplicative property of T leads to the coproduct for Fun, (I50(1, 1)} (note
that D(P.) = D(Ax), D(K) = D(A)):
AR)=Z®1+1® 3% .
A@:) =8, ®1+cosh2f @&y +5inh2f @4, =8, @ 1+e¥ ®@a, 4.7)
A(G)=4.®1+cosh2f @4 —sinh2f ®4- =2 @1+e X @i
and the Hopf algebra Fun,(ISO(1,1)) is given by commutation rules (4.1), coproduct
(4.7}, counit and antipode

e(X)=0 Xelap a., ¥) 4.8)
y(X) =—% y(as) =—ea,  y(a)=—ea_. 4.9)

Provided that the left and right invariant vector fields obtained from the classical matrix
representation similar to (4.6) are

x5 =9, X5, =g, X% =e %3, (4.10)
X5 =8, +2a.8,, —2a_9, X3, =0, X% =8, (4.11)
the Sklyanin bracket induced from r® = A A A, is

If gt =r"P(XEfXbe — XRrXEg) = mo (¥ — 1)8y A By, —2a_8,, A8, )(f ® g)
(4.12)

and gives the structure of a Poisson—Hopf algebra to Fun(ISO(1, 1)).
In particular, for the coordinates ay, a_ and x we get

{x,a:} = — 1 (x,a-}=0  {ay,a-}=—2a._. {4.13)

This means that the commutation rules (4.1) can be seen as a Weyl quantization {, } -
w~![, ] of the fundamental Poisson brackets given by (4.13) (so have been obtained in
{18]) and that coproduct (4.7) does not change under quantization {compare to [4, 12]).
Finally, it is worth recalling that in [4,35, 12, 13] the T-matrix coordinates that generate
Fung (@) close a solvable finite dimensional Lie (super) algebra {with the exception of the
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‘esoteric” quantum GL{r) [S5]). In particular, for the iso(l, 1) case studied in [12] it is
shown that

(7, me] = —zms g, n_]=—zm_ fre, m_]=0 @.14)
where {m, 7, ,m_} are also quantized light-cone coordinates of I§0(1,1). This is no
longer the case for the non-standard deformation (4.1). In fact, if we consider 4y, 8. and
fm = eX (m e Z), we can identify Fun,(ISO(1, 1)) with an infinite dimensional Lie
algebra endowed with a Hopf algebra structure:

AUfw)=Ffu® fu | o , o

Ald)=d.®1+ i®ay (4.15)

AB)=a-®1+ fa®a.

Moreover, since
[Fns G4l =2wm (st — Fm) (4.16)

we have an infinite dimensional Hopf subalgebra generated by 7, and 44 (note that A and
A, do generate a Hopf subalgebra as well). In principle, this infinite-dimensional aspect
makes the approach formally closer to the realistic mtegrable models obtained without
truncating the spectral parameter [5].

5. Applications of the universal T-matrix

5.1. A change of quantum coordinates

It would be interesting to compare the non-standard results so far obtained to the standard
quantum Poincaré group given in [15], where the group element was

1 0 0

G = (&1 cosh ¢ sinhQ) (5.1)
4 sinh8 coshé

and the commutation rules between the quantum coordinates read

[9 ail=w (cosh@ -1}
[9 l=u' sinh§ : (5.2)
(i, @] = w'éy. ‘

The standard quantum (1 -+ 1) Poincaré plane of coordinates (£, 2{”) characterized by

[ffs), “g‘)] =w' X “) is easily derived from these expressions.

To carry out the comparison, the ‘light-cone’ quantum coordinates (dy,&..) should
be transformed into the time and space quantum translations (@i, 42). Both standard and
non-standard quantizations turn out to be Weyl quantizations of the classical coordinates
preserving the multiplicative property of 72 and G (cf (4.12) and equation (3.1) in [15]).
This fact suggests the following relation

6=-2% a=é+a, = b=4_-a,. (5.3)
This redefinition implies that 72 and G become identical. Hence, we have two different sets
of commutation rules compatible with the same coproduct A(G) = G®G. In particular,
the change (5.3) on {4.1) provides the non-standard brackets (w" = —2w)

[9 a]=w (cosh@ —1- sth)

[9 ]l =w (smh9 +1- cosh&)

(41, G2] = w' (&) + &) (5.4)
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The non-standard quantum Poincaré plane (whose relations are invariant under the coaction
defined by G on a vector (£, xé") )) is characterized by

[.(n) A(nJ] a(n)_l_x(n)) (3.5)

A comparison between both quantizations shows that, in this quantum basis, the non-
standard deformation seems to be constructed by adding some additional terms on the
standard relations. It is also worth remarking the absolutely symmetrical role that both
coordinates play in the non-standard case (see the quantum plane relation (5.5)). This
kind of ‘symmetrical’ quantization has already been related to the non-standard (2 + 1)
deformations at a quantum algebra levei [19].

In this context, the T-matrix can be used to derive the transformation of the generators
of Uyiso(l, 1) that is paired by duality to the change of quantum coordinates (3.3). In other
words, by using elementary properties of 7 we can find a set {A;, A2, Aj2} of generators
of Uyiso(l, 1) such that the Hopf algebra dual form T is preserved:

T = oA-Bi-gA:Biy QABR _ A1k oA200 An®d (5.6)
H (4 : H H -
w 1
Since ‘universal’ computations to relate both U,iso(l,1) bases are extremely

cumbersome, we can specialize the T-matrix to a (fundamental) representation ¢ of
Funw(ISO(l 1)) given by

1 \ 00 00
~ O O 0 0 n 00 01
28=16 00 0 Q@)=1, 0 o o
00 0 0/ 0000
(0 0 1
N 0 —2w 0 0
Q@) = 0 w0 5.7
\0 0 0
A straightforward c0mputation shows that
1 0 A As
N . . —2wA
T e Qe 2ioeto® = | T (5.8)
4] 0 0 1

From this point of view, U,ise(l,1) can be seen as a quantum group with non-
commuting coordinates A., A_ and A. Moreover, the coproduct (3.3) is reproduced by the
multiplicative property A(79) = T2®7€. In this way, (5.8) could be seen as a transfer
matrix for a model with quantum dynamical variables generating a quantum Poincaré algebra
{we recall that, for instance, in the sine—Gordon madel the dynamical algebra is just iso(l, 1)
[5]). Therefore, these specializations of universal T-matrices in terms of a representation
of a quanturn group can be used to construct new models in which the dynarnical algebra
coincides with the corresponding original quantum enveloping algebra.

The new quantum coordinates admit a representation Q(&,), O(&;) and Q(@) derived
from (5.3) and (5.7). By computing the corresponding exponentials we obtain a second

expression for the dual form 7€ := A Q@eA Q) g420@);

1 0 —2A|2 Al - AZ

0 e—zw(Al-Az) 0 L(e—zw(A,—Ag) ___723—2wA| + I)

0 0 2uld~ay Y 0 : (5.9)
0

0 0 1

Te =
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The relation between the two U,iso(], 1) bases is now clear

1
A=A — Az A=—24p A_= Eace"z"’ml-ﬂﬂ —2e= AL ), (5.10)

Note that lim,,_.q A_ = A; + A, and we recover the usual classical change of basis.

5.2. The universal R-matrix

It is also possible to obtain a universal R-matrix defined on a quantum algebra U, g from
the expression of its T-matrix if there exists an algebra homomorphism and coalgebra
antihomomorphism ¢ that carries the guantum group Funy,(G) into the quantum algebra
Uywg. In that case, such a solution of the quantum Yang—Baxter equation (QYEE) would be
given by [6]
R=(0de@®)T $.11)
with ® operating on the generators of Uyg. 7
It can be checked that for the non-standard quantum Poincaré algebra the homomorphism
& is given by :
O(F) = wA, OG.) = —wA dE_y=0 oD =1. (5.12)
In fact, the image of Fun, (I SC(L, 1)) under & is not Uyiso(1, 1), but the Hopf subalgebra
generated by A and A, that we shall denote as U;; the dual form for U/,{ will be
Ty = ef+@lsoAQR . : (5.13)
and Fun,(L) will be generated by ¥ and 4.
- The formula-(5.11) applted on (3.7) leads to the following element of U, iso(1,1) @
Uwzso(l 1) ) .

R=(id @ ®) T = g @4 gwidt (5.14)

that is a triangular solution (i.e., o o R = R™!, where o is the flip operator 0 (a®5) = b®a)
of the QYBE (this R-matrix i worth comparing with the one deduced in [22]). Moreover,
it can be proven that

goAX)=RAMXIR™! for X = {A, Ay, A} (5.15)

In particular, it is interesting to show explicitly how the relation (5.15) is fulfilled in the
case of A_. Let us consider the new generator A = A_e*A+_ whose commutation rules
with A, A, and coproduct are

[A,A_]1=-24_  [A44,A_1=0 AA)=1@ A + A_ @ ¥Wh+, (5.16)
To compute the right-hand side of (5.15), we take into account that

of ML) = AU+ o Lfy e LA A1 (5.17)

Setting f = wA ® A, we find that (n > 1)
[WA® Ay, ... [WA® AL, A(AD]? .. ] = (m2w)"A_ @ A%e™A  (5.18)

and, in this way, we get

A ®An ZwA,.

WA®A+ A(A )C—WA(&A*‘—A{A )+Z( nw)n

=AAI+A_® (e—2w4+ — D) = [ @ A+ A_ @ 1= Ag(A_). (5.19)
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Note that eA®4+ turns A(A_) into Ag(A-). Since
[—wAL ® A, ... [~wAL ® A, 8(A]” .. ] = Quw)"AT ® A.  (5.20)
the passage from Ag(A_) to o o A(A_) is given by e~04+®4;

e A4 )Pt = Ag(AL )+Z-——( ) A ® A

n—l

=Ag(A )+ (@M —DNQ@A_=A_ @1+ @ A_ =00 A(A_). (5.21)

Finally, the condition (5.15) for A is straightforwardly obtained from that of A_.

The (quadratic) commutation rules between the entries of the quantum matrix (4.6) that
are derived from (4.1) coincide with the relations obtained via the FRT [23] prescription and
with the aid of a particular representation (2.7) of the quantum R-matrix

R=I®I+wD(A)AD(AL) (5.22)

where [ is the 3 x 3 identity matrix.
Similarly, it can be shown that duality arguments imply that

- 1. . -1, .
R=exp{aa+®x}cxp{?x ®a+] (5.23)
verifies both QYBE and (5.15) for Fun,(I50(1, 1)).

5.3. Quantum (14 1) Poincaré and Galilei with dilations

Let us consider two copies U,,!' and U_, /% (with generators A!, A} and A2, A2Z) of the
(quantum) Hopf subalgebra U, of Uyiso(l, 1). It can be easily checked that the quantum
algebra U, [1 @ U_,[? is a triangular deformation U,, p of a (1+1) Poincaré algebra enlarged
with a spacetime dilation. Explicitly, by introducing the boost K, the time and space
translations A, P and the dilation D as

D=1"+AY K=3(A"- A%
H=A,+AZ P=AL - A% (5.24)
the following coproduct and (non-vanishing) commutation rules are derived:

AH)=H®1+10H AP)=PR1+1®P
A(DY=1® D+ D ®e"’ cosh(wH) + K ® e** sinh(wH) (5.25)

AKY=1Q K+ K ®e*’ cosh(wH) + D ® *” sinh(wH)
[K,H]= é (e*? cosh(wH) — 1) [K,P]= %e‘“’ sinh(wH)
[D, H] = {Ee""’ sinh(w H) (D, P] = % (€*” cosh(wH) —1). (5.26)

The classical r-matrix underlying this deformation is r =r' —r2 = w(D A P + K A H),
and the universal T-matrix linked to U, p will be the product of two T; dual forms (5.13):

T =T Ti2 = 100 461 ghi0d] pA’ed” (5.27)
Under the change of basis (5.24), this element can be written as
T = o0k oPO oD Kak (5.28)

where the change of quantumn coordinates is given by

cd=%'+3? h=1@l +ad)
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k=3 -2 p=1@l -a2). ' (5.29)
As a consequence, the corresponding quantum Poincaré group F un,(P) will be

w (e cosh(f) — 1) [k, 51 = we sinh(f)

[k, A} =
7] = we sinh(k) id, p] = w (e? cosh(k) — 1) (5.30)

d,
A(k) k®1+1®k A(d) d®1+1®d ,
Ah) = hel+ef cosh(k) Qh+ef smh(k} ®p "(5.31)

AP =p®1 + et cosh(k) ®p+e smh(k) ® h.

An isomorphism between the two algebras (5.26) and (5.30) (which is a coalgebra anti-
isomorphism) can be easily found starting by (5.12) and taking into account (5.24). It
reads

ohy=wH OoD=wP  BH)=-wk
S =-wD (1) =1 (5:32)

Hence, the universal R-matrix for Uy, p will be
. R = e H®K c—w PRD ot DeP et KaH (5-33)

a result that is worth comparing with the one obtained in [22] from a different method. Note
that, by construction, the R-matrix (5.33) fulfils the equation (5.15) for all the generators
of Uyp.

The non-relativistic limit of this deformation can be easily computed by means of a
contraction. The contracted generators of the quantum (I + 1) Galilei algebra U,g are
defined in terms of the contraction mapping -

K=K H =H Pl=gP D=D. . (5.34)
The associated quantum contracted coordinates will be (cf {12])

F=ck B =h pF=ep & =d. (535)
1

If we define the contracted deformation parameter as w' = &~
2 — 0, we obtain that U/, will be given by

A(H’)=H’®I+1®H’” APY=P @1+1@ P
A(Df)= 1 ®DI+DI®ew}P’+wIKf®ewP'H.’
AKNY=1@ K + K ®@e“? (5.36)

w and compute the limit

1 (F.% ! pr - / pr
K, H= ;;(ewf’ -1 (D, H]=e*"H - [D,Pl= i, @ —1). (537
_ w
Note that the r-matrix for Uy g is v’ = w'(D' A P'+ K/ A H'), and the contracted universal
T-matrix reads
T’ = oH'OH PO Dol kol . (538

On the other hand, the contraction (5.35).applied onto the quantum Poincaré group (3.30)—
(5.31) gives rise to the following quantum Galilel group Fun, (G):

W.h=wE -1 & p1=wt @ p=w e -1 (5.39)
afy=Fel+lgk  Ad)=d®l+1ed )
ARY=F @1+ @i APY=p @1+ @+l @k . (5.40)
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and the algebra isomorphism and coalgebra anti-isomorphism @’ between Fun,(G) and
Uy g is now -

Cpa‘ﬁf) = H q)r(d"r) =uw P (D’(E’) =—w K’
O'(p"y = —w' D' (1) =1. (5.41)

Hence, the universal R-matrix for U,y g is written in the form
] o P vl U ' + gt 4
szewH®KewP®DewD®PewK®H. (542)

This result is quite interesting since the algebra U,+g is the null-plane isotopy (Hopf)
subalgebra included in the null-plane deformation of the (2 + 1) Poincaré algebra [19].
Hence, (5.42) is a quantum R-matrix for this non-standard Poincaré deformation, although
the equation (5.15) is, in principle, not fulfilled for the two remaining Poincaré generators
out of this subalgebra (the so-called quanturn Hamiltonians [24]).

6. Concluding remarks

Non-standard quantum deformations have received scant attention compared to the standard
ones. However, they present interesting features: the existence of a #-product that quantizes
the Poisson—Lie group is always guaranteed for them, and they are naturaily adapted to the
null-plane basis of the Poincaré algebra (see [19,24] for the construction of such null-plane
deformations of the (2 -+ 1} and (3 4 1) dimensional cases).

It is interesting to note that the essential features of the T-matrix approach have been
obtained without computing all the components of the dual tensors. We have also shown
that the quantum group Fun,(ISO(l, 1)) is, in fact, an infinite dimensional Hopf-Lie
algebra. This structure is rather different to the universal enveloping algebras encountered
when computing 7-matrices in the literature.
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